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Matrix Decomposition-Based Adaptive Control of Noncanonical Form
MIMO DT Nonlinear Systems

Yanjun Zhang , Member, IEEE, Ji-Feng Zhang , Fellow, IEEE, and Xiao-Kang Liu , Member, IEEE

Abstract—This article presents a new study on adaptive control
of multi-input and multi-output (MIMO) discrete-time nonlinear sys-
tems with a noncanonical form involving parametric uncertainties.
The adaptive control scheme employs a vector relative degree
formulation to reconstruct the noncanonical system dynamics and
derives a normal form. Then, a new matrix decomposition-based
adaptive control scheme is proposed for the controlled plant with
a vector relative degree [1, 1, . . ., 1] under some relaxed design
conditions. In particular, the matrix decomposition technique is
adopted to overcome the singularity problem during the adaptive
estimation of an uncertain high-frequency gain matrix. The adap-
tive control scheme ensures closed-loop stability and asymptotic
output tracking. An extension to the adaptive control of general
canonical-form MIMO discrete-time nonlinear systems is also pre-
sented. Finally, through simulations, the effectiveness of the pro-
posed control scheme is verified.

Index Terms—Adaptive control, matrix decomposition, non-
canonical form, output tracking.

I. INTRODUCTION

Adaptively controlling uncertain multi-input and multi-output
(MIMO) nonlinear systems suffers from the singularity problem during
the adaptive control design process. This problem is generally caused
by adaptively estimating the uncertain high-frequency gain matrices.
Estimating the latter matrices may be singular in parameter adaptation,
leading to the singularity problems of the adaptive control laws. To solve
the singularity problem, Morse introduced the matrix decomposition
technique [1].

To date, several works addressed the singularity problems
corresponding to the high-frequency gain matrices. For example,
the work in [2] systematically summarized some matrix decomposition
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techniques commonly used in adaptive control of MIMO linear
time-invariant systems considering continuous-time (CT) and
discrete-time (DT), while the work in [3]–[5] studied matrix
decomposition-based adaptive control problems for CT nonlinear
systems. Matrix decomposition-based adaptive fuzzy/neural network
control methods of CT nonlinear systems were also proposed [8]–[13].
Specifically, for CT and DT LTI systems, existing methods generally
employed the transfer function matrices for the control designs, with
the stability analysis relying on the small-gain lemma [2]. For CT
nonlinear systems, popular methods commonly used robust control and
approximation techniques; however, they usually needed the bound
information of the eigenvalues corresponding to the high-frequency
gain matrices [3]–[7]. Recently, the work in [8] developed a matrix
decomposition-based adaptive control scheme for MIMO CT nonlinear
systems under a linearly parameterized control framework.

However, applying the matrix decomposition technique to adaptive
control designs of MIMO DT nonlinear systems is rare, especially
for those in noncanonical forms. The noncanonical form refers to the
system dynamics not being in the strict-feedback form and the output
being generally a combination of some or all of the state variables.
Accordingly, the canonical form means that the system dynamics are
of the strict-feedback form, and the output is the first state variable.
The canonical-form systems have explicit relative degrees that are
crucial for adaptive control designs. The existing adaptive control
methods of CT and DT nonlinear systems primarily focus on the
canonical-form systems, which are not effective in controlling the
noncanonical form systems. This is because the noncanonical form
systems do not meet the canonical-form matching conditions [14]. On
the other hand, there are no transfer functions or small-gain lemmas
for DT nonlinear systems. Thus, the existing methods for LTI systems
cannot be directly used. The control methods of [12] referring to
the noncanonical form CT systems are also not applicable to con-
trol the noncanonical form MIMO DT systems due to the essential
differences between the stability characterizations of the CT and DT
systems.

Therefore, the singularity problem is still an open research case.
To this end, we develop a matrix decomposition-based adaptive state
feedback control scheme for a class of MIMO DT nonlinear systems.
It solves the adaptive controller’s singularity problem, and ensures the
desired system performance. We also demonstrate that the proposed
control scheme is applicable to control a general class of uncertain
canonical-form nonlinear systems. Finally, through an example, we
verify the validity of the proposed control scheme.

II. PROBLEM STATEMENT

This section presents the system model and the problems to be
addressed in this article.
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A. System Model

Consider the following MIMO DT nonlinear system:

x(t+ 1) = Θ∗
fφf (x(t)) +Bu(t), y(t) = Cx(t) (1)

where t ∈ {0, 1, 2, . . .}, x(t) = [x1(t), x2(t), . . ., xn(t)]
T ∈

Rn, y(t) = [y1(t), y2(t), . . ., yM (t)]T ∈ RM , and u(t) =
[u1(t), u2(t), . . ., uM (t)]T ∈ RM are the state vector, the output
vector, and the input vector, respectively, and Θ∗

f , B, and C are
constant matrices defined as B = [B1, B2, . . ., BM ] ∈ Rn×M with
Bj=[bj1, . . ., bjn]

T ∈ Rn, C= [CT
1 , CT

2 , . . ., CT
M ]T ∈ RM×n with

CT
j = [cj1, . . ., cjn]

T ∈ Rn,

Θ∗
f =

⎡
⎢⎣
θ∗Tf1

. . .
θ∗Tfn

⎤
⎥⎦ ∈ Rn×

∑n

i=1
pi

with θ∗fi = [θ∗i1, θ
∗
i2, . . ., θ

∗
ipi

]T ∈ Rpi , and φf (x(t)) =

[φT
f1
(x(t)), φT

f2
(x(t)), . . ., φT

fn
(x(t))]T ∈ R

∑n

i=1
pi with φfi(x(t))

= [fi1(x(t)), . . .,fipi(x(t))]
T ∈ Rpi , i = 1, . . ., n and fik : Rn →

R, k = 1, . . ., pi, being smooth mappings. Note that the remaining
elements of Θ∗

f not explicitly defined are set to zero. In this article,
we assume that the mappings fik are known and Lipschitz on Rn,
the matrices Θ∗

f , B, and C are unknown, and the state variables are
measurable.

System (1) is of a noncanonical form with linearly parameter-
ized uncertainties. Note that the results of this article can be ex-
tended to a general class of noncanonical form DT nonlinear systems
of the form x(t+ 1) = f(x(t)) + g(x(t))u(t),yj(t) = Cjx(t), k =
1, 2, . . .,M, where g(x(t)) = [g1(x(t)), g2(x(t)), . . ., gn(x(t))]

T ∈
Rn×M such that gi : Rn → RM are nonlinear smooth mappings with
linearly parameterized uncertainties. Given that the control design for
the general system case involves a large amount of notation, to improve
readability and preserve the article in a reasonable length, we use model
(1) to show the control design details.

The control objective is to develop an adaptive state feedback control
law for system (1), ensuring that all closed-loop signals are bounded and
y(t) tracks any given bounded reference output y∗(t) asymptotically:
limt→∞(y(t)− y∗(t)) = 0.

B. Research Problems

Relative degrees: Note that system (1) is of a noncanonical form,
which is not suitable for adaptive control designs, and thus, we first
reconstruct the system dynamics. In this article, we employ a relative
degree-based reconstruction method to solve this problem. Spurred by
the single-input and single-output (SISO) DT nonlinear systems where
the relative degree concept has been systematically studied [15], in this
article, we extend the relative degree concept to facilitate the MIMO
DT nonlinear system (1).

Define F (x, u)=Θ∗
fφf (x(t)) +Bu(t) and F0(x)=F (x, 0). Let

notation ◦ denote a composition operation, i.e., p1 ◦ p2 denotes that
p1 is a function of p2 for any functions p1 and p2 with appropri-
ate dimensions. Specifically, for any positive integer k, we define
F k
0 ◦ F (x, u) = F0(F

k−1
0 ◦ F (x, u)) with F 0

0 ◦ F (x, u) = F (x, u)
and F0 ◦ F (x, u) = F (F (x, u), 0). Then, we define a matrix

G =

[
C1

∂F ρ1−1
0 ◦ F (x, u)

∂u
, . . . , CM

∂F ρM−1
0 ◦ F (x, u)

∂u

]
(2)

which will be used to define the vector relative degrees.
The relative degree definitions proposed in [15] and [16] motivate

us to develop the following definition.

Definition 1: System (1) has a global vector relative degree

[ρ1, ρ2, . . ., ρM ] (ρj ≥ 1 and
∑M

j=1 ρj ≤ n), if Cj
∂F

kj
0

◦F (x,u)

∂u
=

0, kj = 0, 1, . . ., ρj − 2, j = 1, 2, . . .,M ; andG in (2) is nonsingular
for all (x, u) ∈ Rn × RM .

This definition specifies a general vector relative degree condition
for system (1) and can be extended to define vector relative degrees for
a general class of nonlinear systems.

System dynamics reconstruction: The following lemma specifies a
relative degree dependent normal form.

Lemma 1: If system (1) has a vector relative degree [ρ1, ρ2, . . ., ρM ]
for all (x, u) ∈ Rn × RM , via a diffeomorphism T (x(t)) =

[ξT (t), ηT (t)]T for ξ(t) = [ξT1 (t), . . ., ξ
T
M (t)]T ∈ R

∑M

j=1
ρj with

ξj(t) = [ξj1, . . ., ξjρj ]
T ∈ Rρj and η(t) ∈ R

n−
∑M

j=1
ρj , then system

(1) can be transformed into two subsystems: the output dynamics

ξji(t+ 1) = ξj(i+1)(t), i = 1, . . ., ρj − 1

ξjρj (t+ 1) = CjF
ρj−1

0 ◦ F (x(t), u(t))

with ξj1(t) = yj(t), j = 1, 2, . . .,M, such thatG in (2) is nonsingular
for all (x, u) ∈ Rn × RM , and the internal dynamics

η(t+ 1) = q(ξ(t), η(t), u(t)) (3)

where q : R

∑M

j=1
ρj × R

n−
∑M

j=1
ρj × RM → R

n−
∑M

j=1
ρj is a non-

linear smooth mapping.
To prove Lemma 1, we specify ξ(t) and η(t) with ξj1(t) = yj(t).

Based on the Frobenius Theorem [16, Th. 1.4.1], one can find n−∑M
j=1 ρj vectors to construct η(t). The proof of this lemma is similar

to the case of CT nonlinear systems. For further details regarding the
proof of the latter, the reader is referred to [16].

Specification of the control problem: If system (1) has a vector
relative degree [1,1,...,1] for all (x, u) ∈ Rn × RM , then the output
dynamics are

y(t+ 1) = Θ∗
cfφf (x(t)) + Θ∗

cbu(t) (4)

where Θ∗
cb is nonsingular, and Θ∗

cf and Θ∗
cb are in the forms Θ∗

cf =
[θ∗c1f , . . ., θ

∗
cMf ]

T and Θ∗
cb = [θ∗c1b, . . ., θ

∗
cM b]

T with θ∗cjf = CjΘ
∗
f

and θ∗cjb = [CjB1, CjB2, . . ., CjBM ]T .
A commonly used adaptive control law for (4) is in the form

u(t) = Θ−1
cb (t)(−Θcf (t)φf (x(t)) + v(t)), where Θcf (t) and Θcb(t)

are estimates ofΘ∗
cf andΘ∗

cb, respectively, and v(t) is a designed signal.
Note thatΘcb(t)may be singular in the process of parameter adaptation,
leading to the adaptive control law singularity. This article solves this
problem by developing a matrix decomposition-based adaptive control
scheme under a linearly parametric framework.

Remark 1: If system (1) has any higher order vector relative de-
gree, the situation is quite different. For example, if system (1) has a
vector relative degree [2,2,...,2], then the output dynamics are y(t+

2) = Θ∗
cfφf (Θ

∗
fφf (x(t)) +Bu(t)) such that Θ∗

cf

∂φf (Θ∗
f
φf (x)+Bu)

∂u

is nonsingular. Since φf is a nonlinear mapping process, y(t+ 2) lin-
early depends onΘ∗

cf but nonlinearly depends onΘ∗
f ,B andu(t). Such

characterizations impose two difficulties: how to simultaneously handle
the linearly and nonlinearly parameterized uncertainties in y(t+ 2) and
how to derive an explicit adaptive control law. Although several works
address adaptive control for systems with nonlinearly parameterized
uncertainties and/or nonaffine control inputs [17]–[26], these methods
cannot be directly employed to solve the problem discussed previously.
Thus, this article mainly addresses the vector relative degree [1,1,...,1]
case, while the high-order case shall be a future study.
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III. ADAPTIVE CONTROL DESIGN

This section presents the control design details for system (1) with a
vector relative degree [1,1,...,1], along with an extension of the adaptive
control scheme.

A. Design Conditions

For an adaptive control design, the control law u(t) is
designed of the basic form u(t) = u(x(t), y∗(t),Θ(t)) =
u(T−1(ξ(t), η(t)), y∗(t),Θ(t)), where y∗(t) and Θ(t) denote
the given reference output and a set of parameter estimates,
respectively. Thus, (3) can be expressed as η(t+ 1) =
q(ξ(t), η(t), u(T−1(ξ(t), η(t)), y∗(t),Θ(t))) = Q(ξ(t), η(t), v(t)),

where Q : R

∑M

j=1
ρj × R

n−
∑M

j=1
ρj × Rr → R

n−
∑M

j=1
ρj is

a smooth mapping process, and v(t) ∈ Rr is a bounded signal
depending on y∗(t) and Θ(t). Based on this manipulation, we make
the following assumption.

Assumption 1: The origin of system η(t+ 1) = Q(0, η(t), 0) is
globally exponentially stable, and Q(ξ, η, v) is globally Lipschitz in
ξ and v.

In the literature, Assumption 1 is often called the input-to-state stable
(ISS) condition [27], [28]. With Assumption 1, one can verify that if
ξ(t) and v(t) are bounded, η(t) is bounded.

When system (1) has a vector relative degree [1,1,...,1], the output
dynamics are given by (4). Nevertheless, to utilize (4), we need the
following assumption to decompose Θ∗

cb.
Assumption 2: All leading principal minors of Θ∗

cb, defined as
Δi, i = 1, 2, . . .,M, are nonzero and their signs are known.

Remark 2: Based on Assumption 2, Θ∗
cb can be uniquely decom-

posed as Θ∗
cb = LD∗U for some unit lower triangular matrix L, some

unit upper triangular matrix U , and

D∗ = diag{d∗1, d∗2, . . ., d∗M} = diag

{
Δ1,

Δ2

Δ1

, . . .,
ΔM

ΔM−1

}
. (5)

Furthermore, we can derive the SDU decomposition as Θ∗
cb =

S∗DsUs, where S∗ = LD∗D−1
s LT is a positive definite matrix, Us =

D−1
s L−1TDsU is a unit upper triangular matrix, and

Ds = diag{s∗1, s∗2, . . ., s∗M}
= diag{sign[d∗1]γ1, sign[d∗2]γ2, . . ., sign[d∗M ]γM} (6)

such that γi, i = 1, . . .,M, are chosen positive constants. �

B. Parameterized Model and Adaptive Control Law

From Assumption 2, a parameterized model of (4) is derived as

S∗−1y(t+ 1) = DsΘ
∗
1φf (x(t)) +DsΘ

∗
2u(t) +Dsu(t) (7)

where Θ∗
1 = D−1

s S∗−1Θ∗
cf , and Θ∗

2 = Us − I of the form

Θ∗
2 =

⎡
⎢⎢⎢⎢⎣

0 θ∗212 θ∗213 · · · θ∗21 M

0 0 θ∗223 · · · θ∗22 M

· · · · · · · · · · · · · · ·
0 0 0 · · · θ∗2(M−1)M

0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦ .

To ensure the desired system performance, the adaptive control law
is designed as

u(t) = −Θ2(t)u(t)−Θ1(t)φf (x(t)) + Θ3(t)y
∗(t+ 1)

−Θ3(t)Am(y(t)− y∗(t)) (8)

where Θi(t), i = 1, 2, 3, are the estimates of Θ∗
1, Θ∗

2, and (S∗Ds)
−1,

respectively,Am is a stable matrix, and y∗(t) ∈ RM is a given bounded
reference output signal. In particular, Θ2(t) has the form

Θ2(t) =

⎡
⎢⎢⎢⎢⎣

0 θ212(t) θ213(t) · · · θ21 M (t)
0 0 θ223(t) · · · θ22 M (t)
· · · · · · · · · · · · · · ·
0 0 0 · · · θ2(M−1)M (t)
0 0 0 · · · 0

⎤
⎥⎥⎥⎥⎦ (9)

where θ2ij(t) are estimates of θ∗2ij .
Remark 3: The adaptive control law u(t) can be calculated as fol-

lows. Let w(t) = [w1(t), w2(t), . . ., wM (t)]T = −Θ1(t)φf (x(t)) +
Θ3(t)y

∗(t+ 1)−Θ3(t)Am(y(t)− y∗(t)).Note thatw(t) is indepen-
dent ofu(t), andu(t) can be expressed asu(t) = −Θ2(t)u(t) + w(t).
Then, u(t) can be sequentially calculated as

uM (t) = wM (t)

uM−1(t) = − θ2(M−1)M (t)uM (t) + wM−1(t)

...

u1(t) = −θ211(t)u2(t)− · · · − θ21 M (t)uM (t) + w1(t).
(10)

C. Tracking Error Model

We define the tracking error e(t) = y(t)− y∗(t) ∈ RM .
Substituting (8) in (7) yields S∗−1y(t+ 1) = −DsΘ̃1(t)φf (x(t))−
DsΘ̃2(t)u(t) +DsΘ3(t)y

∗(t+ 1)−DsΘ3(t)Ame(t), where
Θ̃i(t) = Θi(t)−Θ∗

i(t), i = 1, 2. Adding −S∗−1y∗(t+ 1) +
S∗−1Ame(t) to the above equation, we obtain

S∗−1(e(t+ 1) +Ame(t))

= −Ds(Θ̃1(t)φf (x(t)) + Θ̃2(t)u(t)

+ Θ̃3(t)(Ame(t)− y∗(t+ 1))) (11)

where Θ̃3(t) = Θ3(t)−Θ∗
3(t). We define Pm(z) = zI +Am,

ϕ(t) = [−φT
f (x(t)),−uT (t),−(Ame(t)− y∗(t+ 1))T ]T ,

Ψ(t) = [Θ1(t),Θ2(t),Θ3(t)] (12)

and Ψ̃(t) = Ψ(t)−Ψ∗(t) = [Θ̃1(t), Θ̃2(t), Θ̃3(t)], where z denotes
the time advance operator. Then, (11) is rewritten as

Pm(z)[e](t) = S∗DsΨ̃(t)ϕ(t). (13)

To implement u from (10), we express Ψ̃(t)ϕ(t) as

Ψ̃(t)ϕ(t) = [(Ψ1(t)−Ψ∗
1)ϕ1(t), . . . , (ΨM (t)−Ψ∗

M )ϕM (t)]T

where

Ψ1(t)−Ψ∗
1 = [θ212(t)− θ∗212, . . ., θ21 M (t)− θ∗21 M

Θ̃11(t), Θ̃31(t)]

...

ΨM−1(t)−Ψ∗
M−1 = [θ2(M−1)M (t)− θ∗2(M−1)M

Θ̃1(M−1)(t), Θ̃3(M−1)(t)]

ΨM (t)−Ψ∗
M = [Θ̃1 M (t), Θ̃2 M (t)]
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and

ϕ1(t) =
[−u2(t),−u3(t), . . .,−uM (t),−φT

f (x(t))

−(Ame(t)− y∗(t+ 1))T
]T

(14)

...

ϕM−1(t) =
[−uM (t),−φT

f (x(t))

−(Ame(t)− y∗(t+ 1))T
]T

(15)

ϕM (t) =
[−φT

f (x(t)),−(Ame(t)− y∗(t+ 1))T
]T

. (16)

We also introduce h0(z) = z − α and h(z) = 1
h0(z)

, with 0 < α <
1. A filtered error is defined as

ē(t) = Pm(z)h(z)[e](t) = [ē1(t), . . ., ēM (t)]T . (17)

Operating both sides of (13) by the stable filter h(z), we obtain

ē(t) = S∗Dsh(z)[Ψ̃ϕ](t) (18)

which is the expected tracking error model.

D. Estimation Error

To design the update laws, we define an estimation error

ε(t) = ē(t) + Φ(t)σ(t) (19)

where Φ(t) is the estimate of S∗Ds and σ(t) =
[σ1(t), σ2(t), . . ., σM (t)]T with

σj(t) = Ψj(t)δj(t)− h(z)[Ψjϕj ](t), δj(t) = h(z)[ϕj ](t). (20)

Note that ē(t), ε(t), σj(t), δj(t) are known at the current time in-
stant. From (18)–(20), ε(t) can be expressed as

ε(t) = S∗Ds[Ψ̃1δ1(t), . . ., Ψ̃MδM (t)]T + Φ̃(t)σ(t).

E. Parameter Update Laws

To implement the control signal, we need to update Θi, i = 1, 2, 3.
From (12), updating Θi is equivalent to updating Ψ(t). Note that ε(t)
depends onΦ(t) (the estimate ofS∗Ds); thus, we further need to update
Φ(t). Using (19)–(20), the parameter update laws are designed as

ΨT
j (t+ 1) = ΨT

j (t)−
sign{d∗j}γjεj(t)δj(t)

m2(t)
, j = 1, 2, . . .,M

(21)

Φ(t+ 1) = Φ(t)− βε(t)σT (t)

m2(t)
(22)

where

m(t) =

√
1 +

∑M

j=1
σ2
j (t) +

∑M

j=1
δTj (t)δj(t) (23)

sign{d∗j} and γj are specified in (5) and (6) such that 0 < γ2
j <

2λmin{S∗−1}, and β ∈ R is a constant parameter such that 0 < β <
2λmin{S∗−1}
λmax{S∗−1} with λmin{S∗−1} and λmax{S∗−1} denoting the minimum

and maximum eigenvalues of S∗−1.
Next, we derive the following lemma to specify some key properties

of Ψj(t) and Φ(t).
Lemma 2: The parameter update laws of (21) and (22) ensure that,

for j = 1, 2, . . .,M ,
1) Ψj(t) ∈ L∞ and Φj(t) ∈ L∞;

2) ε(t)
m(t)

∈ L2 ∩ L∞, Ψj(t+ 1)−Ψj(t) ∈ L2 ∩ L∞, and Φ(t+

1)− Φ(t) ∈ L2 ∩ L∞;
3) limt→∞

ε(t)
m(t)

= 0, limt→∞(Ψj(t+ 1)−Ψj(t)) = 0, and
limt→∞(Φ(t+ 1)− Φ(t)) = 0.

Proof: Consider a positive definite function of the formV (Ψ̃j , Φ̃) =∑M
j=1 Ψ̃jΨ̃

T
j + 1

β
tr[Φ̃TS∗−1Φ]. Then,

V (Ψ̃j(t+ 1), Φ̃(t+ 1))− V (Ψ̃j(t), Φ̃(t))

= −
M∑
j=1

(
2sign{d∗j}γjεj(t)Ψ̃j(t)δj(t)

m2(t)
− γ2

j ε
2
j (t)δ

T
j (t)δj(t)

m4(t)

)

−tr

[
2Φ̃T(t)S∗−1ε(t)σT(t)

m2(t)
− β(ε(t)σT(t))TS∗−1ε(t)σT(t)

m4(t)

]
.

(24)

Using the properties of matrix trace: tr[X1] = tr[XT
1 ] and

tr[X2X3] = tr[X3X2] of any matrices Xi, i = 1, 2, 3, of appropriate
dimensions, we derive

tr

[
2Φ̃T(t)S∗−1ε(t)σT(t)

m2(t)

]
=

2εT(t)S∗−1Φ̃(t)σ(t)

m2(t)
(25)

tr

[
β(ε(t)σT(t))TS∗−1ε(t)σT(t)

m4(t)

]
=

βεT(t)S∗−1ε(t)σT(t)σ(t)

m4(t)
.

(26)

Letting χ(t) = diag{γ2
1δ

T
1 (t)δ1(t), . . ., γMδTM (t)δM (t)} and sub-

stituting (25)–(26) in (24), we have

V (Ψ̃j(t+ 1), Φ̃(t+ 1))− V (Ψ̃j(t), Φ̃(t))

=
εT (t)

(
2S∗−1−χ(t)+βS∗−1σT (t)σ(t)

m2(t)

)
ε(t)

m2(t)
.

Since S∗−1 is a positive definite matrix, an orthogonal ma-
trix Ts ∈ RM×M exists such that TT

s Ts = I and TT
s S∗−1Ts =

diag{λ1, λ2. . ., λM} = Ps with λj being the eigenvalues of S∗−1.
Then, from (23), we have

2S∗−1 − χ(t)+βS∗−1σT (t)σ(t)

m2(t)

≥ Ts

(
2λmin[S

∗−1]I −max{maxj{γ2
j }, βλmax[S

∗−1]}I)TT
s

=
(
2λmin[S

∗−1]−max{maxj{γ2
j }, βλmax[S

∗−1]}) I
which implies that 2S∗−1 − χ(t)+βS∗−1σT (t)σ(t)

m2(t)
≥ α0I , for

some α0 > 0. Hence, we obtain V (Ψ̃j(t+ 1), Φ̃(t+ 1))−
V (Ψ̃j(t), Φ̃(t)) ≤ −α0

ε2(t)

m2(t)
, which implies that V is nonincreasing

and ε(t)
m(t)

∈ L2 ∩ L∞.
Thus,Ψj(t) ∈ L∞ andΦ(t) ∈ L∞. From (21) and (22), the property

ε(t)
m(t)

∈ L2 ∩ L∞ yields Ψj(t+ 1)−Ψj(t) ∈ L2 ∩ L∞ and Φ(t+

1)− Φ(t) ∈ L2 ∩ L∞. Due to ε(t)
m(t)

,Ψj(t+ 1)−Ψj(t), and Φ(t+

1)− Φ(t) all belonging to L2, the properties specified in 3) of Lemma
2 hold.

Lemma 2 shows some desired properties of the parameter estimates.
Given the adaptive control law presented, next, we will analyze the
closed-loop system performance.

F. Stability Analysis

To proceed, some useful notation should be introduced: c denotes a
signal bound; τ(t) denotes a genericL2 ∩ L∞ function that goes to zero
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as t → ∞; and L∞e denotes the set L∞e = {r(t)|∀s < ∞, rs(t) ∈
L∞} for any function r(t) with rs(t) = r(t), t ≤ s, and rs(t) =
0, t > s.

We first give the following result that will be used for the stability
analysis performed shortly.

Lemma 3: For DT signals ri(t) ∈ Rpi , i = 1, 2, 3, with
p1 = p2, such that r1(t) = h(z)[r2](t) and r2(t), r3(t) ∈ L∞e,
if ‖r2(t)‖ ≤ τ1(t) supk≤t ‖r3(k)‖+ τ2(t) ∀t ≥ 0, then ‖r1(t)‖ ≤
τ3(t) supk≤t ‖r3(k)‖+ τ4(t) ∀t ≥ 0, where τi(t) are all L2 ∩ L∞

functions.
Proof: Let hz(t) denote the impulse response function of h(z).

It can be verified that hz(t) =
1
α
(αt − δ(t)) ≥ 0 ∀t ≥ 0, where δ(t)

denotes the unit impulse response. Then, with r1(t) = h(z)[r2](t) and
ignoring the exponentially decaying effect of the initial conditions,
we obtain r1(t) =

∑t
k=0 hz(t− k)r2(k). Let ε3(t) =

∑t
k=0 hz(t−

k)τ1(k), ε4(t) =
∑t

k=0 hz(t− k)τ2(k), which can also be expressed
as ε3(t) = h(z)[τ1](t), ε4(t) = h(z)[τ2](t). Note that h(z) is sta-
ble, and τi(t) ∈ L2 ∩ L∞, i = 1, 2. Thus, we obtain εj(t) ∈ L2 ∩
L∞, j = 3, 4. Then, by setting τ3(t) = ε3(t) and τ4(t) = ε4(t), we
complete the proof.

Next, we provide the main result of this article as follows.
Theorem 1: Under Assumptions 1 and 2, the adaptive control law

(8) with the parameter update laws (21) and (22), applied to system (1)
with a vector relative degree [1,1,...,1], ensures closed-loop stability
and asymptotic output tracking: limt→∞(y(t)− y∗(t)) = 0.

Proof: The proof contains four steps.
Step 1: Show

∑M
j=1 |σj(t)| ≤ τ supk≤t ‖e(k)‖+ τ . Based on the

fact that ‖y∗(t)‖ ≤ c (τ and c were defined in Lemma 3) and
fik(x(t)) are globally Lipschitz in x(t), we derive from (14)–(16) that
‖ϕj(t)‖ ≤ c‖ξ(t)‖+ c‖η(t)‖+ c‖e(t)‖+ c. Then, with Assumption
1 and ξ(t) = y(t), we have

‖ϕj(t)‖ ≤ c‖e(t)‖+ c. (27)

Since z
h0(z)

is proper and stable, ‖ z
h0(z)

[ϕj ](t)‖ ≤ c+

c supk≤t ‖e(k)‖. From (20), we have

h0(z)[σj ](t) = h0(z)[Ψjδj ](t)−Ψj(t)ϕj(t)

= Ψj(t+ 1)
z

z − α
[ϕj ](t) + Ψj(t)

z − α− z

z − α
[ϕj ](t)−Ψj(t)ϕj(t)

= (Ψj(t+ 1)−Ψj(t))
z

z − α
[ϕj ](t)

which reveals that σj(t) can be expressed as

σj(t) = h(z)

[
(z − 1)[Ψj ]

z

h0(z)
[ϕj ]

]
(t). (28)

With |(z − 1)[Ψj ](t)
z

h0(z)
[ϕj ](t)| ≤ ‖Ψj(t+ 1)−Ψj(t)‖

·‖ z
h0(z)

[ϕj ](t)‖, it follows from Lemma 2 that

|(z − 1)[Ψj ](t)
z

h0(z)
[ϕj ](t)| ≤ τ sup

k≤t
‖e(k)‖+ τ. (29)

From (28), (29), and Lemma 3, we obtain |σj(t)| ≤ τ supk≤t ‖e(k)‖+
τ, ∀j = 1, 2, . . .,M. Thus, it follows that

M∑
j=1

|σj(t)| ≤ τ sup
k≤t

‖e(k)‖+ τ. (30)

Step 2: Showm(t) ≤ c supk≤t ‖e(k)‖+ c. From the definition of δj(t)
in (20), and given that h(z) is strictly proper and stable, we obtain
‖δj(t)‖ ≤ c supk≤t ‖ϕj(k)‖+ c. Then, from (27),

‖δj(t)‖ ≤ c sup
k≤t

‖e(k)‖+ c. (31)

From the definition of m(t) in (23), we derive m(t) ≤ 1 +∑M
j=1 |σj(t)|+

∑M
j=1 ‖δj(t)‖. Then, together with (30) and (31), we

have

m(t) ≤ c sup
k≤t

‖e(k)‖+ c. (32)

Step 3: Show e(t) ∈ L∞. From (19), we get ‖ē(t)‖ ≤
‖ε(t)‖+ ‖Φ(t)σ(t)‖ ≤ m(t)‖ ε(t)

m(t)
‖+ ‖Φ(t)σ(t)‖. Since ε(t)

m(t)
∈

L2 ∩ L∞, Φ(t) ∈ L∞, combined with (30), we derive ‖ē(t)‖ ≤
τ supk≤t ‖e(k)‖+ τ. Then, we obtain

sup
k≤t

‖ē(k)‖ ≤ τ sup
k≤t

‖e(k)‖+ τ. (33)

Let P−1
m (z) denote the inverse of Pm(z). Then, P−1

m (z)h0(z)
is proper and stable. From (17) and (33), we derive that ‖e(t)‖ ≤
c supk≤t ‖ē(k)‖+ c ≤ τ supk≤t ‖e(k)‖+ c which implies e(t) ∈
L∞.

Step 4: Show closed-loop stability and limt→∞(y(t)− y∗(t)) = 0.:
Since supk≤t ‖ē(k)‖ ≤ τ supk≤t ‖e(k)‖+ τ and e(t) ∈ L∞, we have
ē(t) ∈ L2 ∩ L∞. WithP−1

m (z)h0(z) being proper and stable, we obtain
e(t) ∈ L2 ∩ L∞. Note that for any DT signal belonging to L2, it
certainly converges to zero. Thus, we conclude that limt→∞ e(t) = 0.

With the boundedness of e(t), from (27), (30), (31), and (32), we
obtain the boundedness of ϕj(t), σj(t), δj(t), and m(t). Moreover,
from ξ(t) = y(t), we derive the boundedness of ξ(t), which follows
from Assumption 1 that η(t) ∈ L∞. Thus, based onT (x) = [ξT , ηT ]T ,
we have the boundedness of x(t). From (8), we have the boundedness
of u(t). �

Next, an extension of the proposed adaptive control scheme is
presented.

G. Extension to Canonical-Form MIMO DT Systems

This part extends the application of the proposed control scheme to
the adaptive control of a general class of canonical-form MIMO DT
nonlinear systems.

System model: We consider the following canonical-form MIMO
DT nonlinear system

yi(t+ ρi) = fi(x(t)) +
M∑
j=1

gij(x(t))uj(t), i = 1, 2, . . .,M

η(t+ 1) = q(ξ(t), η(t), u(t)) (34)

where yi ∈ R, η ∈ Rrη , ui ∈ R, fi ∈ R, gij ∈ R, i, j = 1, 2, . . .,M,
are globally Lipschitz functions with linearly parameterized uncertain-
ties, and q ∈ Rrη is a nonlinear smooth mapping. For system (34), the
state vector is

x(t) = [y1(t), . . ., y1(t+ ρ1 − 1), . . .,

yM (t), . . ., yM (t+ ρM − 1), ηT (t)]T ∈ RL.

The input vector and the output vector are u(t) =
[u1(t), . . ., uM (t)]T ∈ RM and y(t) = [y1(t), . . ., yM (t)]T ∈ RM ,
respectively, with L =

∑M
i=1 ρi + rη . We assume that x(t) is measur-

able, which implies that yi(t+ k), i = 1, 2, . . .,M,k = 1, . . ., ρi − 1,
can be used for the adaptive control law design.

Assumption: System (34) needs to satisfy the following conditions.
i) The internal dynamics are ISS, which is similar to Assumption 1;

ii) System (34) has a well-defined vector relative degree, that is,
{gij(x)} is nonsingular for all x ∈ Rn.

iii) {gij(x)} can be decomposed into the form Θ∗
gΦg(x) with an

unknown constant square matrix Θ∗
g and a known time-varying

square matrix Φg(x) such that det{Φg(x)} is away from zero.
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Parameterized model: The output dynamics are expressed
as [y1(t+ ρ1), . . . , yM (t+ ρM )]T = Θ∗

cfφf (x(t)) + S∗DsUsū(t),
where Θ∗

cfφf (x(t)) is a parameterized model of the vector
[f1(x(t)), . . ., fM (x(t))]T , S∗DsUs is a decomposition of Θ∗

g , and
ū(t) = Φg(x(t))u(t). Based on assumptions ii) and iii), we observe
that Φg(x(t)) is always nonsingular with a bounded inverse for all
x ∈ Rn.Then, we derive a parameterized model of the output dynamics
as

S∗−1

⎡
⎢⎣

y1(t+ ρ1)
...

yM (t+ ρM )

⎤
⎥⎦ = DsΘ

∗
1φf (x(t)) +DsΘ

∗
2ū(t)

+Dsū(t) (35)

whereΘ∗
1 andΘ∗

2 have the same expressions asΘ∗
1 andΘ∗

2 of the vector
relative degree [1,1,...,1] case.

Adaptive control law: Motivated by (8), with y∗(t) =
[y∗

1(t), . . ., y
∗
M (t)]T , the adaptive control law is designed as

u(t) = Φ−1
g (x(t))ū(t)

ū(t) = −Θ2(t)ū(t)−Θ1(t)φf (x(t)) + Θ3(t)y
∗(t+ ρ)

−Θ3(t)

⎡
⎢⎣

∑ρ1−1
i=0 a1i(y1(t+ i)− y∗

1(t+ i))
...∑ρM−1

i=0 aMi(yM (t+ i)− y∗
M (t+ i))

⎤
⎥⎦ (36)

where Θi(t), i = 1, 2, 3, have the same expressions as Θi(t) of the
vector relative degree [1,1,...,1] case. In particular, the parameters aji

are set as constants such that all zeros of Pmi(z), i = 1, 2, . . .,M, are
inside the unit circle of the complex z-plane, where

Pmi(z) = zρi + ai(ρi−1)z
ρi−1 + · · ·+ ai1z + ai0.

Note that Θ2(t) in (36) has the same expression as that in (9). Thus,
ū(t) can also be calculated based on the procedure of Remark 3.

Tracking error model: Let e(t) = y(t)− y∗(t). Substituting (36) in
(35) provides

S∗−1

⎡
⎢⎣

e1(t+ ρ1) +
∑ρ1−1

i=0 a1iei(t+ i)
...

eM (t+ ρM ) +
∑ρM−1

i=0 aMieM (t+ i)

⎤
⎥⎦

= −DsΘ̃1(t)φf (x(t))−DsΘ̃2(t)ū(t)

−DsΘ̃3(t)

⎡
⎢⎣

∑ρ1−1
i=0 a1iei(t+ i)− y∗

1(t+ ρ1)
...∑ρM−1

i=0 aMieM (t+ i)− y∗
M (t+ ρM )

⎤
⎥⎦ (37)

where Θ3(t) and Θ̃3(t) have the same expressions as Θ3(t)
and Θ̃3(t) of the vector relative degree [1,1,...,1] case.
Let Ψ(t) = [Θ1(t),Θ2(t),Θ3(t)],Ψ̃(t) = Ψ(t)−Ψ∗(t) =
[Θ̃1(t), Θ̃2(t), Θ̃3(t)],Pm(z) = diag{Pm1(z), . . ., PmM (z)}, and

ϕ(t) = [−φT
f (x(t)),−ūT (t),−

ρ1−1∑
i=0

a1iei(t+ i) + y∗
1(t+ ρ1)

· · · ,−
ρM−1∑
i=0

aMieM (t+ i) + y∗
M (t+ ρM )]T .

Then, (37) can be expressed as

Pm(z)[e](t) = S∗DsΨ̃(t)ϕ(t) (38)

which is the expected tracking error model.

With the adaptive control law (36), the tracking error model (38), and
following the design procedure of the vector relative degree [1,1,...,1]
case, we sequentially derive the corresponding estimation errors and
parameter update laws, and prove that the adaptive control law (36) can
ensure closed-loop stability and asymptotic output tracking. Neverthe-
less, we omit the relevant details to optimize the reading flow.

We have developed a matrix decomposition-based adaptive control
scheme for system (1) with vector relative degree [1,1,...,1]. Moreover,
we demonstrated that the control scheme is applicable to adaptively
control canonical-form MIMO DT systems with a general vector rela-
tive degree.

IV. SIMULATION STUDY

This section demonstrates the design procedure and verifies the
effectiveness of the proposed control method.

A. System Model

Consider the following system model

x(t+ 1) = f(x(t)) +B1u1(t) +B2u2(t)

yj(t) = Cjx(t), j = 1, 2 (39)

where x(t) = [x1(t), x2(t), x3(t)] ∈ R3 is the state vector,
uj and yj , j = 1, 2, are the input and output variables,
respectively, B1 = [1, 0, 1]T , B2 = [1, 2, 0]T , C1 = [−1, 0, 0],
C2 = [1,−2,−1], and f(x) = [f1(x), f2(x), f3(x)]

T . Moreover,
f1 = θ∗Tf1 φf1 = [1.2, 2.08, 0.24][x1, x1 sinx3,

√
1 + x2

2]
T ,f2 =

θ∗Tf2 φf2 = [0.16, 0.4][x2 sinx1, x1]
T , and f3 = θ∗Tf3 φf3 =

[0.48, 1.6][x3, sin(x1)]
T . In this simulation, we assume

that Bj , Cj , θ
∗
fi
, i = 1, 2, 3, j = 1, 2, are all unknown, and

φfi , i = 1, 2, 3, are known.

B. System Transformation

From the Bj , Cj , j = 1, 2 parameters, we obtain[
C1B1 C1B2

C2B1 C2B2

]
=

[−1 −1
0 −3

]

which implies that system model (39) has a vector relative degree
[1,1]. Then, based on Lemma 1, let [ξ1(t), ξ2(t)]T = [y1(t), y2(t)]

T

and η(t) = x3(t), and the system model is transformed into two sub-
systems: the output dynamics

y1(t+ 1) = − f1(x(t))− u1(t)− u2(t)

y2(t+ 1) = f1(x(t))− 2f2(x(t))− f3(x(t))− 3u2(t) (40)

and the internal dynamics η(t+ 1) = f3(x(t)) + u1(t). Based on the
transformed system dynamics, one can verify that the simulation model
satisfies Assumptions 1 and 2.

C. Parameterized Model

With the relative degree condition, the output dynamics (40) are pa-
rameterized as y(t+ 1) = Θ∗

cfφf (x(t)) + Θ∗
cbu(t), where φf (x) =

[x1, x1 sinx3,
√

1 + x2
2, x2 sinx1, x1, x3, sinx1]

T , and

Θ∗
cf =

[−1.2 −2.08 −0.24 0 0 0 0
1.2 2.08 0.24 −0.32 −0.8 −0.48 −1.6

]

Θ∗
cb =

[−1 −1
0 −3

]
.
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Fig. 1. Response of output y of the model (39) versus y∗.

Fig. 2. Response of control input and system state variables.

To derive the parameterized model, we first decompose Θ∗
cb as the

SDU form

Θ∗
cb = S∗DsUs =

[
1 0
0 1

] [−1 0
0 −3

] [
1 1
0 1

]
(41)

where S∗,Ds, and Us are the three matrices of the right-hand side of
(41), respectively. Then, from (7), the parameterized model of the output
dynamics is

S∗−1y(t+ 1) = DsΘ
∗
1φf (x(t)) +DsΘ

∗
2u(t) +Dsu(t)

where

S∗−1 =

[
1 0
0 1

]
, Θ∗

2 =

[
0 1
0 0

]

and

Θ∗
1 =

[
1.2 2.08 0.24 0 0 0 0
−0.4 −0.69 −0.08 0.1067 0.2667 0.16 0.5333

]
.

D. Adaptive Control Law

From (8), the adaptive control law is designed as

u(t) = −Θ2(t)u(t)−Θ1(t)φf (x(t)) + Θ3(t)y
∗(t+ 1)

−Θ3(t)Am(y(t)− y∗(t))

where y∗(t) = [−1− 0.5 sin t
6
+ 0.5 cos t

7
, 2 + 0.5 cos t

8
]T , and

Θi(t), i = 1, 2, 3, are the estimates ofΘ∗
1,Θ∗

2, (S∗Ds)
−1, respectively.

Specifically,

Θ1(t) =

[
θ111(t) θ112(t) · · · θ117(t)
θ121(t) θ122(t) · · · θ127(t)

]

Θ2(t) =

[
0 θ212(t)
0 0

]

Θ3(t) =

[
θ311(t) θ312(t)
θ321(t) θ322(t)

]

and

(S∗Ds)
−1 =

[−1 0
0 −0.3333

]
, Am =

[
1
2
0

0 1
2

]
.

From (21) and (22), the parameter update laws can be specified.
However, to preserve a reasonable article length, we omit further details.

Fig. 1 presents the response of y(t) of the model (39) versus y∗(t),
which highlights that y(t) tracks y∗(t) asymptotically. Fig. 2 illustrates
the response of the control signal u(t) and the system state variables,
indicating that the input and the state variables are bounded. In sum-
mary, the simulation figures verify the validity of the proposed adaptive
control scheme.

V. CONCLUSION

This article develops a new matrix decomposition-based solution
to solve the singularity problem in an adaptive control design of a
class of noncanonical form MIMO DT nonlinear systems with a vector
relative degree [1,1,...,1]. The developed control design overcomes
the restrictive conditions presented in the literature. The restrictive
conditions are the controlled plants of some canonical forms and the
high-frequency gain matrices of positive/negative definite. Through
simulations, we demonstrate the control design procedure and verify
the effectiveness of the proposed control scheme. Further work shall
address the adaptive control problem for systems with high-order vector
relative degrees and investigate the practical application of the proposed
control scheme.

REFERENCES

[1] A. S. Morse, “A gain matrix decomposition and some of its applications,”
Syst. Control Lett., vol. 21, no. 1, pp. 1–10, 1993.

[2] G. Tao, Adaptive Control Design and Analysis. Hoboken, NJ, USA: Wiley,
2003.

[3] J. Chen, A. Behal, and D. Dawson, “Robust feedback control for a class of
uncertain MIMO nonlinear systems,” IEEE Trans. Autom. Control, vol. 53,
no. 2, pp. 591–596, Mar. 2008.

Authorized licensed use limited to: CAS Academy of Mathematics & Systems Science. Downloaded on July 28,2022 at 02:08:31 UTC from IEEE Xplore.  Restrictions apply. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 67, NO. 8, AUGUST 2022 4337

[4] Z. Wu, J. Chen, C. Wu, and K. Zhang, “Adaptive tracking for MIMO
nonlinear systems with unknown fast time-varying parameters,” Int. J.
Robust Nonlinear Control, vol. 28, no. 13, pp. 4058–4074, 2018.

[5] L. Wang, A. Isidori, and H. Su, “Output feedback stabilization of nonlin-
ear MIMO systems having uncertain high-frequency gain matrix,” Syst.
Control Lett., vol. 83, pp. 1–8, 2015.

[6] B. Chen, X. Liu, K. Liu, and C. Lin, “Adaptive fuzzy tracking control
of nonlinear MIMO systems with time-varying delays,” Fuzzy Sets Syst.,
vol. 217, pp. 1–21, 2013.

[7] W. Shi, “Adaptive fuzzy control for MIMO nonlinear systems with non-
symmetric control gain matrix and unknown control direction,” IEEE
Trans. Fuzzy Syst., vol. 22, no. 5, pp. 1288–1300, Oct. 2014.

[8] A. Boulkroune, L. Merazka, and H. Li, “Fuzzy adaptive state-feedback
control scheme of uncertain nonlinear multivariable systems,” IEEE Trans.
Fuzzy Syst., vol. 27, no. 9, pp. 1703–1713, Sep. 2019.

[9] L. Liu, Y. J. Liu, A. Q. Chen, S. C. Tong, and P. Chen, “Integral barrier
Lyapunov function based adaptive control for switched nonlinear systems,”
Sci. China Inf. Sci., vol. 63, no. 3, 2020, Art. no. 132203.

[10] Y. Ren, M. Chen, and J. Y. Liu, “Bilateral coordinate boundary adaptive
control for a helicopter lifting system with backlash-like hysteresis,” Sci.
China Inf. Sci., vol. 63, no. 1, 2020, Art. no. 119203.

[11] S. Y. Shao and M. Chen, “Sliding-mode-disturbance-observer-based adap-
tive neural control of uncertain discrete-time systems,” Sci. China Inf. Sci.,
vol. 63, no. 4, 2020, Art. no. 149204.

[12] Y. J. Zhang et al., “A matrix decomposition based adaptive control scheme
for a class of MIMO non-canonical approximation systems,” Automatica,
vol. 103, pp. 490–502, 2019.

[13] S. Ge, J. Zhang, and T. Lee, “Adaptive neural network control for a class of
MIMO nonlinear systems with disturbances in discrete-time,” IEEE Trans.
Syst., Man, Cybern., Part B, vol. 34, no. 4, pp. 1630–1645, Aug. 2004.

[14] G. Tao, “Multivariable adaptive control: A survey,” Automatica, vol. 50,
no. 11, pp. 2737–2764, 2014.

[15] S. Monaco and D. Normand-Cyrot, “Minimum-phase nonlinear discrete-
time systems and feedback stabilization,” in Proc. 28th Conf. Decis.
Control, 1987, pp. 979–986.

[16] A. Isidori, Nonlinear Control Systems, 3rd ed. London, U.K.: Springer-
Verlag, 1995.

[17] W. Lin and C. Qian, “Adaptive control of nonlinearly parameterized
systems: The smooth feedback case,” IEEE Trans. Autom. Control, vol. 47,
no. 8, pp. 1249–1266, Aug. 2002.

[18] M. Farza, M. M’Saad, T. Maatoug, and M. Kamoun, “Adaptive observers
for nonlinearly parameterized class of nonlinear systems,” Automatica,
vol. 45, no. 10, pp. 2292–2299, 2009.
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